高數問題求完整結論,高數問題求一個完整結論 10

時間 2021-09-14 05:34:08

1樓:買可愛的人

不好意思,告訴你答案是在害您,為了您的學業成績,我只能告訴您知識點

從整個學科上來看,高數實際上是圍繞著極限、導數和積分這三種基本的運算的。對於每一種運算,我們首先要掌握它們主要的計算方法;熟練掌握計算方法後,再思考利用這種運算我們還可以解決哪些問題,比如會計算極限以後:那麼我們就能解決函式的連續性,函式間斷點的分類,導數的定義這些問題。

這樣一梳理,整個高數的邏輯體系就會比較清晰。

極限部分:

極限的計算方法很多,總結起來有十多種,這裡我們只列出主要的:四則運算,等價無窮小替換,洛必達法則,重要極限,泰勒公式,中值定理,夾逼定理,單調有界收斂定理。每種方法具體的形式教材上都有詳細的講述,考生可以自己回顧一下,不太清晰的地方再翻到對應的章節看一看。

會計算極限之後,我們來說說直接通過極限定義的基本概念:

通過極限,我們定義了函式的連續性:函式在處連續的定義是,根據極限的定義,我們知道該定義又等價於。所以討論函式的連續性就是計算極限。然後是間斷點的分類,具體標準如下:

從中我們也可以看出,討論函式間斷點的分類,也僅需要計算左右極限。

再往後就是導數的定義了,函式在處可導的定義是極限存在,也可以寫成極限存在。這裡的極限式與前面相比要複雜一點,但本質上是一樣的。最後還有可微的定義,函式在處可微的定義是存在只與有關而與 無關的常數使得時,有,其中。

直接利用其定義,我們可以證明函式在一點可導和可微是等價的,它們都強於函式在該點連續。

以上就是極限這個體系下主要的知識點。

導數部分:

導數可以通過其定義計算,比如對分段函式在分段點上的導數。但更多的時候,我們是直接通過各種求導法則來計算的。主要的求導法則有下面這些:

四則運算,複合函式求導法則,反函式求導法則,變上限積分求導。其中變上限積分求導公式本質上應該是積分學的內容,但出題的時候一般是和導數這一塊的知識點一起出的,所以我們就把它歸到求導法則裡面了。能熟練運用這些基本的求導法則之後,我們還需要掌握幾種特殊形式的函式導數的計算:

隱函式求導,引數方程求導。我們對導數的要求是不能有不會算的導數。這一部分的題目往往不難,但計算量比較大,需要考生有較高的熟練度。

然後是導數的應用。導數主要有如下幾個方面的應用:切線,單調性,極值,拐點。

每一部分都有一系列相關的定理,考生自行回顧一下。這中間導數與單調性的關係是核心的考點,考試在考查這一塊時主要有三種考法:①求單調區間或證明單調性;②證明不等式;③討論方程根的個數。

同時,導數與單調性的關係還是理解極值與拐點部分相關定理的基礎。另外,數學三的考生還需要注意導數的經濟學應用;數學一和數學二的考生還要掌握曲率的計算公式。

積分部分:

一元函式積分學首先可以分成不定積分和定積分,其中不定積分是計算定積分的基礎。對於不定積分,我們主要掌握它的計算方法:第一類換元法,第二類換元法,分部積分法。

這三種方法要融會貫通,掌握各種常見形式函式的積分方法。熟練掌握不定積分的計算技巧之後再來看一看定積分。定積分的定義考生需要稍微注意一下,考試對定積分的定義的要求其實就是兩個方面:

會用定積分的定義計算一些簡單的極限;理解微元法(分割、近似、求和、取極限)。至於可積性的嚴格定義,考生沒有必要掌握。然後是定積分這一塊相關的定理和性質,這中間我們就提醒考生注意兩個定理:

積分中值定理和微積分基本定理。這兩個定理的條件要記清楚,證明過程也要掌握,考試都直接或間接地考過。至於定積分的計算,我們主要的方法是利用牛頓—萊布尼茲公式藉助不定積分進行計算,當然還可以利用一些定積分的特殊性質(如對稱區間上的積分)。

一般來說,只要不定積分的計算沒問題,定積分的計算也就不成問題。定積分之後還有個廣義積分,它實際上就是把積分過程和求極限的過程結合起來了。考試對這一部分的要求不太高,只要掌握常見的廣義積分收斂性的判別,再會進行一些簡單的計算就可以了。

會計算積分了,再來看一看定積分的應用。定積分的應用分為幾何應用和物理應用。其中幾何應用包括平面圖形面積的計算,簡單的幾何體(主要是旋轉體)體積的計算,曲線弧長的計算,旋轉曲面面積的計算。

物理應用主要是一些常見物理量的計算,包括功,壓力,質心,引力,轉動慣量等。其中數學一和數學二的考生需要全部掌握;數學三的考生只需掌握平面圖形面積的計算,簡單的幾何體(主要是旋轉體)體積的計算。這一部分題目的綜合性往往比較強,對考生綜合能力要求較高。

這就是高等數學整個學科從三種基本運算的角度梳理出來的主要知識點。除此之外,考生需要掌握的知識點還有多元函式微積分,它實際上是將一元函式中的極限,連續,可導,可微,積分等概念推廣到了多元函式的情況,考生可以按照上面一樣的思路來總結。另外還有兩章:

級數、微分方程。它們可以看做是對前面知識點綜合的應用。比如微分方程,它實際上就是積分學的推廣,解微分方程就是求積分。

而級數則是對極限,導數和積分各種知識的綜合應用。

2樓:匿名使用者

似乎沒有這樣的結論

∫abf(x)dx >=0 的必要條件,如果一定要有的話,存在點c屬於(a,b), f(c)>=0

3樓:匿名使用者

在某區間內,f(x)如果大於等於0,則積分f(x)dx必大於等於0。

一道高數題,請問在中值定理那一塊,當待證結論中只有一箇中值ξ時,用還原法,我想弄懂的是,為什麼構造 200

4樓:匿名使用者

不一定每次都是ln裡面的東西,正確來說,應該是整理成f(x,y)=c(其中c是任意常數),輔助函式即為f(x,y)

判斷p級數的斂散性?並證明。(高等數學)

5樓:陌染柒小玖

證明方法如下:

一、即當p≤1p≤1時,有1np≥1n1np≥1n,調和級數是發散的,按照比較審斂法:

若vnvn是發散的,在n>n,總有un≥vnun≥vn,則unun也是發散的。

調和級數1n1n是發散的,那麼p級數也是發散的。

二、當p>1時,證明的思路大概就是對於每一個整數,取一個鄰域區間,使鄰域區間間x∈[k,k−1]x∈[k,k−1]使得某個函式在[k,k−1][k,k−1]鄰域區間內的積分小於1xp1xp在這個鄰域區間的積分。然後目的當然是通過積分求指數原函式解決問題。

這個證明的比較函式取的很巧妙,令k−1≤x≤kk−1≤x≤k,那麼1kp≤1xp1kp≤1xp.

利用比較審斂法的感覺,應該找一個比p級數的一般式大的收斂數列,證明p級數收斂。這個就有點反套路了。

1kp=∫kk−11kpdx(這裡是對x積分而不是k)≤∫kk−11xp1kp=∫k−1k1kpdx(這裡是對x積分而不是k)≤∫k−1k1xp

其中(k=2,3....)(k=2,3....)

討論級數和,用k的形式代表p級數,並且用一個大於它的函式來求得極限。

sn=1+∑k=2n1kp(p級數)≤1+∑k=2n∫k−1k1xp=1+∫n11xpdxsn=1+∑k=2n1kp(p級數)≤1+∑k=2n∫kk−11xp=1+∫1n1xpdx。

這裡利用積分割槽間的可加性:

∫d1f(x)dx+∫d2f(x)dx=∫d1+d2f(x)dx。

6樓:匿名使用者

如圖所示

不過我記得這個書上都有的吧。。。

高數題!求高手解答!感激不盡!

7樓:匿名使用者

這是利用同濟5版《高等數學》上冊p245例6(2)的結論得到的。

這個結論是:

證明的方法是:作x=∏-t的換元。

一道高數數學極限的題目,求畫線部分為什麼得到的,這是什麼結論,為啥分母一定是0

8樓:匿名使用者

分式求極限,如果極限≠0也≠∞,那麼分子分母只要有一個趨向0,則另一個也必定趨向0。

以你的題目為例,分子為(cosx-b)sinx,兩個因式中,(cosx-b)暫時未知,但sinx是趨向0的,所以分子也趨向0。

反證一下,如果分母e^x-a不趨向0,那麼在分子為0而分母不為零的情況下,結果必定是0,這與題意給出的極限=3不符。

所以,e^x-a → 0

9樓:匿名使用者

因為分子的極限為0,如果分母不為0,則整個極限為0,而不可能是3,所以分母只能趨於0

簡單高數問題求極限

和差化積公式 cosln 1 x cosln x 2sin ln 1 x ln x 2 sin ln 1 x ln x 2 2 sin ln 1 1 x 2 0ln 1 1 x 0 設f t coslnt 當x 0時,f t 在 x,x 1 上滿足拉格朗日中值定理,則 f x 1 f x x 1 x...

高數幾個問題(求過程),高數問題 如圖這個廣義積分怎麼解?求具體步驟,

1 羅爾定理簡述 f a f b 則在區間 a,b 上至少有一點 使得f 0 設f x cosx xsinx,則f x f x dx cosx xsinx dx xcosx c f x 在 0,2 上連續,在 0,2 上可導,且有f 0 f 2 0 c 根據羅爾定理,在區間 0,2 上,至少存在一點...

高數擺線問題,高數問題,擺線求弧長,公式是什麼啊?

2 由擺線x a t sint y a 1 cost 的一拱 0 t 2 與y 0所圍圖形的面積 0,2 a ydx 0,2 a 1 cost d a t sint a 2 0,2 1 cost 2dt a 2 0,2 1 2cost cost 2 dt a 2 0,2 1 2cost 1 cos2...