怎樣求線面,線線的夾角?

時間 2025-06-05 18:55:14

1樓:衛振英吾未

線面角:直線l與平面s相交於a點。在直線l上任取一點p,做垂線。

垂直於平面,設垂足為b,連線ab,那麼角pab就是線面角。

面面角:平面a和b相交於直線l,那麼你可以在平面a和b上作遊帆兩條直線l1和l2,使得l1垂直於l,l2垂直於l.那麼茄轎l1和l2的夾角就是面面角。

這兩個角的計算。可以通過向量。

直線經過a(x1,y1)

b(x2,y2);那麼它的斜率就是k=(y2-y1)/(x2-x1)

那麼直線的方向向量。

就是(x2-x1,y2-y1)

知道兩條直線的方向向量了之後,就可以用兩向量的夾角公式。

來計算了。設這個角度是a,兩直線的方向向量分別是(x2-x1,y2-y1);(x4-x3,y4-y3)

由公式:兩向量模的乘積*cosa=兩向量顫磨肆的的點積。

就可以得到這個角度a

兩向量的模。

是:√[x2-x1)²+y2-y1)²]和√[(x4-x3)²+y4-y3)²]

他們的點積就是:(x2-x1)*(x4-x3)+(y2-y1)*(y4-y3)

這樣就可求出a的值。

2樓:仝金蘭盈綾

首先明確蠢梁一點就是立體幾何中的問題永遠要轉化為平面幾何問題解決(即立幾化平幾)。所以要求線面角與線線角,即要先作出其平面角,然後再求解。過程如下:

線面角實質就是平面斜線與平面斜線在平面內的射影所成的角!要求角,就要先作角,常在斜線上任取一點(有特殊位置取特殊位置)向平面作垂線,則斜線與平面逗喊的交點(斜足)與垂線與平面的交點(垂足)的連線為-射影!然後,代入三角形中去解!

而線線角,若是異面直線所成角,就任意平移一條跟另一條相交,構成平面角後,再代入三角形中求解山檔野!

線面夾角怎麼求

3樓:小魚教育

先求平面的法向量,再求直線的方向向量,最後求兩向量所成角的餘弦。

與曲面的區別:

微分幾何研究的物件,直觀上,曲面是空間具有兩個自由度的點的軌跡,曲面可用方程z=f(x,y)或f(x,y,z)=0來表示,也可用引數方程x=j(u,v),y=ψ(u,v),z=c(u,v)表示。在最簡單的曲面中,除平面外,有旋轉面和二次曲面,曲面還有直紋面、可展曲面、極小曲面、多面曲面、單側曲面等。

平面的基本性質是研究空間圖形性質的理論基礎:

如果一條直線的兩個點在乙個平面內,那麼這條直線上的所有點都在這個平面內。如果兩個平面有乙個公共點,那麼它們還有其他公共點,這些公共點的集合是一條直線。經過不在一條直線上的三個點,有且只有乙個平面。

推論一:經過一條直線和直線外的一點,有且只有乙個平面。

推論二:經過兩條相交直線,有且只有乙個平面。

推論三:經過兩條平行直線,有且只有乙個平面。

平面的基本性質即課本中的三個公理及其推論,是研究空間圖形性質的理論基礎,是立體幾何推理論證的理論依據。

線與面的夾角公式

4樓:健身達人小俊

為sina=cos=|n·s|/(n|·|s|),其空間中平面方程為ax+by+cz+d=0,法向量。

n=(a,b,c)。另外線面夾角是指過不平行於平面的直線上一點作平面的垂線,這條直線與平面的交好橘點與原直線與平面的交點的連線與原直線構成的銳角或直角。斜線與友消團它在平面上的射影。

所成的角為線面夾橋賀角。

線線夾角公式是什麼?

5樓:知識改變命運

線線夾角公式是k=(y2-y1)/(x2-x1),夾角公式是基本數學公式,分為正切公式和餘角公式,正切公式用tan表示,餘角公式用cos表示。

兩直線的夾角指的是兩直線所成的小於等於90°的角,但是當夾角為90°時,k不存在,故當k存在時,正切值。

始終為正。<>

角常見測量單位:

以角的端點為圓心做圓弧。由於圓弧的半徑和弧長成正比,而角是長度的比例,所以圓的大小不會影響角的測量。

1、弧度:用角在圓上所切出的圓弧的長度除以圓的半徑,一般記作rad。弧度是國際單位制。

中規定的角的度量,但卻不是中國法定計量單位,角度則是角在中國的法定計量單位。此外,弧度在數學及三角學中有廣泛的應用。

2、角度:由角在圓上所切出的圓弧的長度除以圓的周長再乘以360的結果,一般用°來標記,讀作「度」。一度可以繼續分為60「分」或3600「秒」。角度在天文學和全球定位系統。

中有重要應用。

3、梯度:是角在圓上所切出的圓弧的長度除以圓的周長再乘以400的結果。

線線角怎麼求?

6樓:懟懟

空間向量線面夾角公式:cosθ=a*b/(|a|*|b|)。

兩個向量間的餘弦值:

兩個向量間的餘弦值可以通過使用歐幾里得點積公式求出。給定兩個屬性向量a和b,其餘弦相似性θ由點積和碰辯凱向量長度給出。

公式上部分:a與b的數量積座標運算:設a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2。

公式下部分是a與b的模的乘積:設a=(x1,y1),b=(x2,y2),則(|a||b|)=根號下(x1平方+y1平方)*根號下(x2平方+y2平方)。

線線角和線面角求解方法:

線線角可以直接採用如下公式求取,因為線線角範圍是(0,π/2],因此其夾角的正弦值和餘弦值均恒大於等於零,所以直接求絕對值灶歲即可。

線面角的求取則需要藉助平面的法向量,如下圖所示,線面角與該直線和該平面的法向量所成的角互餘,所以線面角的正弦值為直線與平面法向量所成角的餘弦值,線面角的餘弦值與平面法向量所笑喚成角的正弦值。

又因為線面角的範圍同樣為(0,π/2],其夾角的正弦值和餘弦值均恒大於等於零,所以在求該直線與該平面的法向量所成角的餘弦值直接取絕對值即可。

線面夾角公式

7樓:健身達人小俊

為cos=|a*n|/(a||b|),線面夾角是和核指過不平行於平面的直線上一點作平面的垂線,這條直線與平面的交點與原直線與平面的交點的連線與原直線構成的銳角或直角。斜線與它在平面上的射影。

所成的角為線面慎散夾角。

這條線與寬棚氏原直線的夾角的餘角。

線面,即為夾角。

夾角範圍:(0,90]或(0,π/2)。

線面角的求法

8樓:情感人生最為重要

線面角的求法有直接法、三餘弦定理、三正檔謹弦定理。

1、直接法。

即定義法,作出斜線、垂線、斜線在平面上的射影組成的直角三角形,根據條件求出斜線與射影所成的角即為所求。

2、三餘弦定理。

設斜線與平面所成角為θ,在平面上作出一條過斜足的特殊直線,求出該直線與射影間的夾角θ,以及它與斜線間的櫻緩夾角γ或其餘弦,就可利用三餘弦關係cosγ=cosθ·cosβ求出線面角的餘弦值。

3、三正弦定理。

設二面角m-ab-n的度數為α,在平面m內有一條射線ac,脊蠢模它和稜ab所成角為β,和平面n所成角為γ,則sinγ=sinαsinβ。

結論:二面角是半平面內的一條直線與另一半平面所成線面角的最大值,即二面角是線面角的最大值。

如何求線線夾角

9樓:

您好,線線夾角公式是k=(y2-y1)/(x2-x1),夾角公式是基本數學公式,分為正切公式和餘角公式,正切公式用tan表示,餘角公式用cos表示。兩明衝直線的夾角指的是兩直線所激悔成的小於等激鉛殲於90°的角,但是當夾角為90°時,k不存在,故當k存在時,正切值始終為正。

繡花底線麵線怎樣調才不緊不鬆,平車麵線緊底線很松怎麼調啊

乙個是手感,乙個是目測的,一邊調一邊用手感覺線的鬆緊 看單平針的針跡,浮線的話說明麵線松或者底線緊了,下針點上浮帶出了底線的話說明麵線緊了或者底線松了,這種方法很直觀可以判斷特別是在走有弧線的單平針特別明顯,個人經驗望採納喲 底面線的張力影響到繡花線機繡出產品的質量和產量,良好的底面線張力才能使繡花...

求向量a向量b的夾角,設向量a與b的夾角為 ,定義a與b的 向量積 a b是乙個向量,它的模 a b a b

a 3,3 2b a 1,1 b 1 2 a 1,1 1 2 3,3 1,1 1 2 2,4 1,2 c a b 3,3 1,2 2,1 a b c 三向量可構成三角形 a 根號下 3 3 3 2 b 根號下 1 2 5 c 根號下 2 1 5根據餘弦定理 cos a b c 2 a b 18 5 ...

求高中數學必修二第二章,線線垂直,線面垂直,線線平行,線面平行,面面垂直,面面平行等的所有方法總結

基本概念 公理1 如果一條直線上的兩點在一個平面內,那麼這條直線上的所有的點都在這個平面內。公理2 如果兩個平面有一個公共點,那麼它們有且只有一條通過這個點的公共直線。公理3 過不在同一條直線上的三個點,有且只有一個平面。推論1 經過一條直線和這條直線外一點,有且只有一個平面。推論2 經過兩條相交直...